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ABSTRACT

The present paper attempts to shed light on outisigmesearch performance using the example
of citation distributions. In order to answer theegtion of how the analysis of outstanding per-
formance, in general, and highly cited papers,drtigular, could be integrated into standard
techniques of evaluative scientometrics. Two gdmaeghods are proposed: One solution aims
at quantifying the performance represented bydhet citations distributions independently of
the “mainstream”, the second one, a parametersio@gion, provides performance classes for
any level. Advantages and shortcoming of both neslaye discussed.

1. INTRODUCTION

In an earlier study of the statistical backgroufidaentometric indicators (Glanzel and Moed,
2012) the issue of ‘outliers’ was raised. Whilaniany fields outliers can simply be discarded as
being exceptions, in bibliometrics the extreme galuepresent the high-end of research per-
formance and deserve therefore special attentiba.alithors addressed the question of in how
far extreme-value statistics can serve as supplameimdicators to the standard measures but
only general suggestion were given. In the pregaeper this issue will be deepened by combin-
ing results of extreme-value theory with statidtic@&thods in scientometrics. As for the theory
of extreme values, | mainly refer to the resultskbyil Julius Gumbel and, more recently, by
Jan Beirlant and his collaborators.

On the basis of the pioneering work by L. Tippetl &A. Fisher, E.J. Gumbel published his
book entitledStatistics of Extremen the theory of extremes in 1958. The Gumbelidigion,
which is one of the three possible extreme-valstributions and Gumbel's characteristic ex-
treme values are closely related to this theory.

According to the Fisher-Tippet limit theorem for xivaa (Fisher and Tippet, 1928), two cases
are of particular interest:

i) Fréchet distributiom'-(x):e'x_a forx > 0 for Pareto-type distribution and
i) Gumbel distributiorF(x)ze'e'X for distributions of exponential type

It is not the objective of this study to analyse aiscuss the properties of these particular limit
distributions, but it should be mentioned that #ifve types illustrate that extreme values of
Paretian and exponential distributions behave ghffgrent way. This important property of
distributions concerning the behaviour of theirrexte values has strong effect on the evalua-
tion of the observations in the tail of differegpés of empirical distributions. Most distribu-
tions in scientometrics are assumed to be of Rardype, that is, they approximately follow a



power law. In particular, scientometrics mainly Ideaith distributions derived from authorship
or citation networks. These include publicatioriaigt co-authorship, citation rates and number
of references. In evaluative bibliometrics, puliima productivity and citation impact form the
most important distributions. Before the issue ofstanding performance is tackled, a short
general introduction into the theory of scientoraetlistributions is given. All steps are illus-
trated by examples from real-life distributions.

2. A CONCISE DISCOURSE ON SCIENTOMETRIC DISTRIBUTIONS

One single statistic is usually not sufficient &sdribe the distribution of citations by papers in
an adequate manner (Glanzel, 2009). Using the gheaof scientific journals covered by
Thomson Reuters’ Web of Science database, the raldissshown that journals in the same field
might have a similar mean citation impact althotigh relative frequency of their unicited pa-
pers considerably differs. Indeed, shares of udgegers or inactive authoifg)@nd mean val-
ues (M) are the most frequently used statistics thatdieactly be derived from the mentioned
distribution models. Although means are certaiffilgced by extreme values to a certain extent,
most distribution models provide acceptable fitstma basis of these two statistics to the lower
end and the central section of those skewed disimitis that are typical of bibliometrics. The
following example might illustrate this effect. Beghand, some notations and the necessary
background for this exercise is introduced.

In this context, two models with two free parameteach are chosen to describe typical skewed
bibliometric distributions. The first one, timegative binomial distributionepresents the expo-
nential type, while the other one, téaring distributionstands for the Pareto-type.

A non-negative integer-valued random variaKles said to have a negative binomial distribu-

tion, if
—pex= =[N peg (P k-k—012
o 2 oz

whereN > 0 and P > 0O are real parameters.

The probabilityp, = P(X=0) = P+1)™ and the expectationXt= NP are of particular interest as
they can be used to characterise the share ofdngi#tpers and the mean, respectively.

A non-negative integer-valued random varia¥leas a Waring distribution with real parameters
N anda, if

0, = A(X=k=_C N Ntk

1 k=0,1,2, ...,
N+a N+oa+1 N+o+ Kk

where N > 0 andi > 0.

Analogously to the previous case one has for thangadistributionpy= a/(N+a) and K =
N/(a—1). Note that the expected value is finite only i 1.

The following tail property is quite obvious.

€  for the negative binomial distributio

(41 . o , ifkis large.
¢,k @ for the Waring distribution

wx=@:{



¢, andc; are positive real values aod: In[P/(P+1)]. Furthermore, linp./pc = P/(P+1) < 1, if
k tends to infinity, in the first case, and lp.1/p« = 1lin the second case.

In the following case a hypothetical sample size 6f1000 is assumed, and the parameters of
the two distributions are chosen so that dgindm roughly coincide. The choice &f = 0.45
andP = 3 for the negative binomial, amdi= 1.9 andx = 2.4 for the Waring distribution results
in fo=0.54 anan= 1.35 vsf, = 0.56 andn = 1.36, respectively. Both pairs are similar aneine

the lower part of the distribution does not diffégnificantly (1= 1000 andx*~ 10). Figure 1
shows the similar shapes of the two distributianglieir “heads” and “trunks”.
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Figure 1. “Head” and “trunk” of the negative binoral and Waring distribution with similar mean
and share of uncited papers

Nevertheless, the tail elements of the negativerhial distribution are of order & while
those of the Waring distribution are approximatef. In order to illustrate the deviation of the
tails from each other, Gumbel’'s characteristic &xig values have been calculated for the two
distributions. For any given sample of sizethe Gumbel's characteristic extreme valug$ (
are defined as follows.

u =G (kn)=sup & G(X) >kn}; k=1,2,...,n,
whereG := 1-F andF is the common empirical distribution function bétsample elements.

It can be shown that in the above example Gumiosbksacteristic extreme valua;) consid-
erably differs for the two distribution models. Oolgtainsu; = 18 for the negative binomial and
u; = 42 for the Waring distribution although the cddted frequencies hardly differ in the cen-
tral section and at the lower end of the distritnsi

A further real-world example is based on citati@atadcollected for the topic “Osteoarthritis
research”. Data have been extracted from ThomsarteReWeb of Sciencelhe publication
year was 2008 and the citation window comprises f@ars beginning with the publication
year (i.e., 2008-2011). Since parameter estimasidmased on the meamég 9.437) and the
share of uncited paperf € 11.4%), the shapes of both fitted distributignegative binomial
and Waring) are close to the shape of the empioical(see Figure 2). The estimated parameters



areN = 0.88 andP = 10.7 for the negative binomial model, a¥d39.53 anda = 5.19 for the
Waring distribution.
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Figure 2. Fit of the negative binomial and Waringtdbution to the “head” and “trunk” of the citatin
distribution in ‘osteoarthritis research’ (Publicah year: 2008, citation window: 2008-2011)
[Data sourced from Thomson Reuters Web of Knowledge

For Gumbel's extreme values one obtaips 86 from the negative binomial model amd=
148 from the Waring model. However, the most cftager received 411 citations and the num-
ber of citations received by the paper ranking tlot52 citations) roughly coincides with the
“prediction”. Glanzel and Schubert (1988a) havevahthat the often extremely long tail can
often not be explained by the underlying distribntmodel.

In total, only 1.3% of all papers in the set reedivmore than 50 citations each, however, these
papers jointly received 11.4% of all citationsisltstraightforward to show that, in general, we
have the following situation.

i) Inthe “exponential” case the sharél[0, 1] of the most cited papers receives a share
of all citations.
a-1
i) In the “Paretian” case the sharél[0, 1] of the most cited papers receives a share

of all citations, wheret is assumed to be larger than 1.

In the above case, for instance, the exponeniiaiiadel has obviously to be rejected. In the
Paretian modgb=1.3% results in

a) 23.5% fora= 1.5,

b) 11.4% fora = 2, and

¢) 5.5% fora = 3
This means, that with respect to the tail the patamestimation for the Waring distribution on
the basis of the head and trunk needs to be cetgict., arx value in the neighbourhood of 2
should be assumed instead of previously estimaaéice\of 5. However, both the exponential

and the Paretian model works well for the head tamak usually representing 95% or even
more of the observations, but they are not in Viith the long tail (cf. Glanzel and Schubert,



1988a). In the following sections two particulapegaches to overcome this discrepancy will
be discussed. The first one is based on a taihpetex, while the second one provides a parame-
ter-free solution.

3. TAIL INDICES AS SUPPLEMENT FOR PERFORMANCE
INDICATORS

3.1.The tail index of Paretian distributions

Because of the above mentioned “inconsistenciedaibfevaluation the question arises of in
how far tail characteristics could supplement billetric indicators that are, otherwise, rather
measuring the mainstream. In several areas suéhsasance mathematics, where extreme
values play an important role, the estimation efttil parameten of Pareto-type distributions
has received much attention. Assume th&}i{, ., is a sample of independent identically dis-
tributed random variables with Paretian distribati®hen the ranked sampi¢ has the follow-
ing property.

P(KAA(X /X 1) < X) ~ 1€ s k< ko

Hence Hill's estimator (Hill, 1975) for the taildexy = a™ can be derived as the mean of the
upperk elements of this series.

k
H =k™> In X = In X,

i=1

It can be shown thad, is asymptotically normally distributed (<< n) with variance 1Ka?).
This property allows to construct confidence ings\vory = o™

The estimation of the tail index is rather problémaince most methods, as for instance the
Hill estimator too, are sensitive to the cut-offigidor the tail. Mathematicians have therefore

sought for alternative and more robust solutiores since. In what follows, one simple solution

will be presented that provides more robust reshiisis still sensitive to the cut-off point.

3.2.QQ plots

Assume that {X}i-1 ., is a ranked sample of the observationg £X_. The exponential quan-
tile—quantile plot (QQ plot) is then constructed@kws.

[—m[n‘—ﬂJ, Ianj  i=1,2,.n

Beirlant et al. (2004) have shown that in caseirddrity the slope of a Pareto QQ plot ap-
proximates the Pareto tail indgx 1/ The application of quantile plotting to scientdnes
and using the Pareto tail index for the assesswfeintividual research performance has been
proposed by Beirlant et al (2007). Since the choicine cut-off point is always arbitrary the h-
index is used for the following examples. At thecneaand meso level this choice forms a good
compromise but at lower levels of aggregation thedex goes often far beyond the tail, nota-
bly in the case of citation impact of pre-eminegiestists.

Figures 3 and 4 present the QQ plots for two rebetopics. The tail indey is given by the
slope of the regression line. The first one isadyeknown by the above discussion. The plot for



osteoarthritis researctshown in Figure 3 once again emphasises that dhetd®parameten
has to be assumed much less than estimated frosathple. The value of 1.6 lies even below
that one suggested on the basis of the citatioreskaeived by the most cited 1.3% of publica-
tions. Also the second example is taken from thé WeScience database. The topibisfuels
within the subject category ‘fuels and energy’. lRuahion year and citation window are the
same as in the previous example. Here one obtai@eto parameter of almost exactly 2 and
the fit is even better than in the previous examBlmilarly to osteoarthritis research, mean and
share of uncited papers, otherwise, provide gaisdofi the overwhelming part of the distribu-
tion for both the negative binomial and the Waningdel.

In evaluative practice, the mean and the sharenoted papers could be supplemented by the
tail indexy = 1/ to characterise the outstanding citation impattafy, a highewy value indi-
cates more outstanding performance. This methadréady applied by several bibliometric
groups (e.g., Lietz, 2012). Of course, the questioees of what the weight of an indicator
based on a minute share of publications could bd,ia how far this kind of quantification
could be precise enough to provide a reliable nreafsu the assessment of (outstanding) per-
formance or even for ranking exercises. The alnmssiluble problem of finding the optimum
cut-off point for the tail ofnon-ParetoParetian distributions and the observed incomihi&gib
with other estimators for the same parameter (Eng2l and Schubert, 1988a) makes the use of
the tail index as a fine-tuned indicator for evéilkepurposes questionable.
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Figure 3. Pareto QQ plot based on the h-index (é4}the topic osteoarthritis research with= 1.6
(Publication year: 2008, citation window: 2008-201Data sourced from Thomson Reuters Web of
Knowledge]
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Figure 4. Pareto QQ plot based on the h-index é®@}the topic biofuel research with= 2.0(Publica-
tion year: 2008, citation window: 2008-2011) [Dataurced from Thomson Reuters Web of Knowledge]

A further issue arises from real outliers that nhidistort the estimates or at least affect their
reliability. In such cases, only a smaller fractmindata can be used for inference in the tail.
Recently statistics of extremes raindomly censored dat@inmahl et al., 2008) has become a
new topic in probability theory to cope with sukhkliissues. In the following, an alternative
method, that is less sensitive to the above-meati@ontingencies than the tail indgxwill be
introduced.

4. A PARAMETER-FREE SOLUTION USING CSS

A further alternative is a “reduction” of the dibuition over individual items to a distribution
over some essential classes representing speedioss of the original one. A solution using
six classes has been suggested by Leydesdorff @04ll). According to their model, a pre-set
set of six rank percentages is calculated on tiseskaf the reference distribution. Individual
observations are then scored according to the p&ge the publications in question belong to.
Two particular problems arise from this approa@maly the arbitrariness of pre-set percentiles
and the ties in both the reference distribution wedobservations.

4.1.Characteristic Scores and Scales (CSS)

Another solution can be based on the metho@Qludracteristic Scores and Scal@SSS) pro-
posed by Glanzel and Schubert (1988b). Charabntessores are obtained from iteratively
truncating samples at their mean value and realogl the mean of the truncated sample until
the procedure is stopped or no new scores arenebital he following mathematical description
has been taken from a study by Glanzel (2007, 843—

First putby = 0 andvy = n, where n is the sample size, i.e., the nurabpublicationsb; is then
defined as the sample mean

The valuev; is defined by the following inequality



X, zb and X, ,<h.
This procedure is repeated recurrently, particylarl

bk =Vk—1x_i* |

i1 k-1

andvy is chosen so that
X, 2h and X, ,,<h ke L

The basic propertielg, < b; < ... andvy=v, 2= ... are obvious from the definition. Obviously,
the procedure comes to an endif 1 for somek > 0 is reached. Thieth class is defined by
the pair of threshold valueb,[;, b) and the number of papers belonging to this dassunts to
Vi-1—Vk-

The procedure is usually stoppedkat 3 sincev, might otherwise become too small. The pa-
pers found in the resulting four classes are calleatly cited (less cited than averag&irly
(above average but less citations thgnremarkablycited (received at leabf but less thaib;
citations) andutstandinglycited (more frequently cited thég).

Both the scoreby and the scalew(;—v\) have interesting mathematical properties, whesuit
in self-adjusting, parameter-free solutions foatin-impact assessment. The robustness of
scales and classes has been analysed in the alsowsned paper by Glanzel (2007).

According to the characterisation theorem for theek distribution by Glanzel et al. (1984) the
conditional expectation satisfies the condition

b, = E(X|X > bk—l) ~aby., + by,

wherea =a/(a-1) anda is the free (tail) parameter of the Pareto digtidn. This results by
recursion in the following property

These properties will serve as the groundwork fassible application to research evaluation,
notably for the high-end of performance.

4.2.CSS in evaluation practice

Characteristic scores should — as all locationcaitirs — not be used for comparison across
subject areas since those depend strongly on thiecsuThe first scoré, is, in fact, identical
with the mean value of the empirical citation disition. All other scores are conditional means
depending also oh,, and thus increase with growitkgfollowing a power law. Examples for
this effect can be found in Glanzel (2007), again.

Within a narrow discipline, the comparison of cepending scores is, of course, possible. This
is shown using the example of papers publishedhénjournalsScientometricsn the period
2002-2011The long period was necessary to obtain suffibjdatge publication sets for both
the world total and the individual countries thaivé published in the journal. Citations have
been counted from the publication year till 2012alve selected four countries and compared
their citation impact among each other as well &k thie world standard.



It should be mentioned that this example primaséyves as an illustration of methodology be-
cause of some limitations due to the choice ofditetion window. In particular, a paper pub-
lished in 2010 or later has, of course, window Es@nce to reach the highest class than a paper
published much earlier, but this has little efféthe distribution of publications of the counsie
under study over the complete period does not galigrdiffer. More specifically, the variable
citation-window structure is to the detriment ohdyically growing countries like China since
articles tend to be younger than those in the eafar set.

The scores for the world total are used as theaebe standard. The procedure was stopped at
k = 3. The calculation of the equivalent scoresdach country is not necessary; it is merely
used an auxiliary tool fomternal benchmarkingnd illustration of the possibility of intra-
subject comparison. The correspondbghresholds are shown in Table 1. For example all
values of the US are higher than those of Spais tepresenting a higher standard at all levels,
and a US paper in scientometrics needs 49 citatmf® considered outstandingly cited with
respect to the own national standard, while in 538 citations are sufficient to reach the same
effect with respect to the Spanish benchmark. Hewepapers from both countries need to
receive 55 citations each to qualify as outstardiniged with respect to the world standard.

Table 1. CSS scores &tientometricpapers for the world standard and four selectathtries [Data
sourced from Thomson Reuters Web of Knowledge]

Score World USA Spain Belgium China
b, 9.2 9.6 6.2 16.0 6.8
b, 26.5 26.0 16.5 43.2 16.3
bs 54.5 48.2 29.5 100.8 27.6

After these introductory considerations, the assess of the citation impact according to per-
formance classes will be explained. Preferably fdasses should be used, wherelittbresh-
olds calculated from the world total are used agaimeference standard. The share of a given
unit’s (e.g., country, region or institute) papéyand in the four world classes of the reference
population can be compared with the world standaravell as with other units. Note that the
unit under study (and all other benchmark unitsvall) must be part of the reference popula-
tion. The CSS scores of the world standard thevesas the benchmark (cf. Glanzel and Schu-
bert, 1988b). If a unit's performance is a truerfori’ of the world standard, its distribution over
classes is expected to coincide with that of thddvo

In the present case, for instance, 13 out of 14&rawith Belgium author(s) have received
more than 26 but less than 55 citations each (ableR). These 8.8% of all Belgian papers are
considered remarkably cited. 9 papers have beed gibre frequently than 54 times each. Thus
6.1% of Belgian papers in Scientometrics are onthteyly cited. The share of papers in the
classes fairly, remarkably and outstandingly cieedteed their reference standards. Conse-
quently, the remaining class of poorly cited papmstains less papers than expected on the
basis of the world standard. The four countrieddlimation counts meeting the above criteria
and the shares in the corresponding classes caoube in Table 2. The comparison among the
individual countries can be interpreted analogoulhe “reduced” distribution with four classes
provides a quantified overview of citation impadthaespect to the world standard while it
keeps the peculiarities of the shape and skewrfedge riginal citation distribution. For in-
stance, the data for the US reveal a less poladistiibution than the reference standard.

Table 2. CSS-class shares of publications in Sziretrics for four selected counties with respedhto
world standard [Data sourced from Thomson Reutezs @ Knowledge]



USA Spain Belgium China World

Papers Share Papers Share Papers Share Papers Share Papers Share
133 71.5% 126 81.8% 87 58.8% 109 80.1% 1047 74.1%
37 19.9% 21 13.6% 39 26.4% 20 14.7% 261 18.5%

13 7.0% 6 3.9% 13 8.8% 6 4.4% 77 5.4%

3 1.6% 1 0.6% 9 6.1% 1 0.7% 28 2.0%

186  100.0% 154  100.00% 148  100.00% 136 100.00% 1413 100.00%

The question arises of what indicator(s) could bit bn the basis of these shares. The answer
to that question is none. This is certainly a dis@ptment to those who wish to would like to
express citation impact by one single number. Haregne should resist any temptation to
calculate averages, linear combinations or compasdicatorsover classesThis would result

in crashing multi-dimensionality to linearity and foosing essential information. Except for
smoothening the effect of real outliers, thesedattirs would not provide more information
than properly calculated elementary statistics.

Although shares should be compared in each diseigéeparately, combinati@mver subjectss

in principle possible. In order to avoid distortiocaused by different citation behaviour in the

different disciplines, classes should be determifoecach individual subject, and appropriate

shares should be combined on the basis of thesymithlication counts in the corresponding

classes afterwards. One should, however, keep ma mhiat the results for large subject fields

and for all fields combined calculated in this waight be affected by biases caused by deviat-
ing publication profiles of different units.

5. DISCUSSION AND CONCLUSIONS

The analysis of the high-end of scientific disttibos is one of the most difficulty issues in
evaluative scientometrics. And this is not merelathematical issue: it is fundamentally quite
impossible to draw an exact borderline betweeny'gand” and “outstanding”. Furthermore, in
citation analysis, outstanding performance camafigt be explained by the “standard” citation
behaviour (cf. Glanzel and Schubert, 1988) — add/idual observations might be misleading
and even distort statistics as has impressively lsbewn by Waltman et al. (2012). One ex-
tremely highly cited paper might even distort theking of universities if this is based on one
single statistic. However, this is not typicallybaliometric issue. So-called censored data or
data distorting extreme values of a distributioa Rnown in several fields, e.g., in insurance
mathematics (cf. Matthys et al., 2004), just to timmone example.

The analysis of the tail of publication and citatidistributions, i.e., of that part, which is as-
sumed to be linked with high performance, mightphaehderstand the mathematical rules of
extreme communication behaviour and quantify ootiiteg performance. However, estimators
of tail indices, as such, represent a very smalteslof the underlying population or sample and
do not provide information about the charactersstitthe overwhelming majority. Furthermore,
these statistics are often not suited for comboamatvith standard statistics. Percentiles or — even
better — self-adjusting classes like those obtafnesh the CSS model allow the definition of
proper performance classes and the needless intega measures of outstanding and even
extreme performance into the assessment of stampeaformance. Even extreme outliers like
the case reported by Waltman et al. do not affextistics because the influence of individual
observation on the total publication is marginadl abservation for the units under study are
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represented by classes instead of individual vallies only “drawback” of this method is that
the calculation of a “single” indicator over classhould be avoided as this would reduce the
gained added value and destroy all advantagesah#thod.
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