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ABSTRACT 

The present paper attempts to shed light on outstanding research performance using the example 
of citation distributions. In order to answer the question of how the analysis of outstanding per-
formance, in general, and highly cited papers, in particular, could be integrated into standard 
techniques of evaluative scientometrics. Two general methods are proposed: One solution aims 
at quantifying the performance represented by the tail of citations distributions independently of 
the “mainstream”, the second one, a parameter-free solution, provides performance classes for 
any level. Advantages and shortcoming of both methods are discussed. 

1. INTRODUCTION 

In an earlier study of the statistical background of scientometric indicators (Glänzel and Moed, 
2012) the issue of ‘outliers’ was raised. While in many fields outliers can simply be discarded as 
being exceptions, in bibliometrics the extreme values represent the high-end of research per-
formance and deserve therefore special attention. The authors addressed the question of in how 
far extreme-value statistics can serve as supplementary indicators to the standard measures but 
only general suggestion were given. In the present paper this issue will be deepened by combin-
ing results of extreme-value theory with statistical methods in scientometrics. As for the theory 
of extreme values, I mainly refer to the results by Emil Julius Gumbel and, more recently, by 
Jan Beirlant and his collaborators.  

On the basis of the pioneering work by L. Tippet and R.A. Fisher, E.J. Gumbel published his 
book entitled Statistics of Extreme on the theory of extremes in 1958. The Gumbel distribution, 
which is one of the three possible extreme-value distributions and Gumbel’s characteristic ex-
treme values are closely related to this theory.  

According to the Fisher-Tippet limit theorem for maxima (Fisher and Tippet, 1928), two cases 
are of particular interest: 

i) Fréchet distribution F(x)=e-x-a
 for x > 0  for Pareto-type distribution and 

ii)  Gumbel distribution F(x)=e-e-x
 for distributions of exponential type   

It is not the objective of this study to analyse and discuss the properties of these particular limit 
distributions, but it should be mentioned that the above types illustrate that extreme values of 
Paretian and exponential distributions behave in a different way. This important property of 
distributions concerning the behaviour of their extreme values has strong effect on the evalua-
tion of the observations in the tail of different types of empirical distributions. Most distribu-
tions in scientometrics are assumed to be of Paretian type, that is, they approximately follow a 
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power law. In particular, scientometrics mainly deals with distributions derived from authorship 
or citation networks. These include publication activity, co-authorship, citation rates and number 
of references. In evaluative bibliometrics, publication productivity and citation impact form the 
most important distributions. Before the issue of outstanding performance is tackled, a short 
general introduction into the theory of scientometric distributions is given. All steps are illus-
trated by examples from real-life distributions. 

2. A CONCISE DISCOURSE ON SCIENTOMETRIC DISTRIBUTIONS 

One single statistic is usually not sufficient to describe the distribution of citations by papers in 
an adequate manner (Glänzel, 2009).  Using the example of scientific journals covered by 
Thomson Reuters’ Web of Science database, the author has shown that journals in the same field 
might have a similar mean citation impact although the relative frequency of their unicited pa-
pers considerably differs. Indeed, shares of uncited papers or inactive authors (f0) and mean val-
ues (m) are the most frequently used statistics that can directly be derived from the mentioned 
distribution models. Although means are certainly affected by extreme values to a certain extent, 
most distribution models provide acceptable fits on the basis of these two statistics to the lower 
end and the central section of those skewed distributions that are typical of bibliometrics. The 
following example might illustrate this effect. Beforehand, some notations and the necessary 
background for this exercise is introduced.   

In this context, two models with two free parameters each are chosen to describe typical skewed 
bibliometric distributions. The first one, the negative binomial distribution represents the expo-
nential type, while the other one, the Waring distribution stands for the Pareto-type.  

A non-negative integer-valued random variable X is said to have a negative binomial distribu-
tion, if 
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where N > 0 and P > 0 are real parameters.  

The probability p0 = P(X=0) = (P+1)-N and the expectation EX = NP are of particular interest as 
they can be used to characterise the share of uncited papers and the mean, respectively. 

A non-negative integer-valued random variable X has a Waring distribution with real parameters 
N and α, if 
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where N > 0 and α > 0.  

Analogously to the previous case one has for the Waring distribution p0= α/(N+α) and EX = 
N/(α–1). Note that the expected value is finite only if α > 1.  

The following tail property is quite obvious.  
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c1 and c2 are positive real values and c = ln[P/(P+1)]. Furthermore, lim pk+1/pk = P/(P+1) < 1, if 
k tends to infinity, in the first case, and lim pk+1/pk = 1in the second case. 

In the following case a hypothetical sample size of n = 1000 is assumed, and the parameters of 
the two distributions are chosen so that both f0 and m roughly coincide. The choice of N = 0.45 
and P = 3 for the negative binomial, and N = 1.9 and α = 2.4 for the Waring distribution results 
in f0 = 0.54 and m = 1.35 vs. f0 = 0.56 and m = 1.36, respectively. Both pairs are similar and even 
the lower part of the distribution does not differ significantly (n = 1000 and χ2 ~ 10). Figure 1 
shows the similar shapes of the two distributions for their “heads” and “trunks”. 

 

 
Figure 1. “Head” and “trunk” of the negative binomial and Waring distribution with similar mean  

and share of uncited papers 

Nevertheless, the tail elements of the negative binomial distribution are of order e–1.2k while 
those of the Waring distribution are approximately k–3.4. In order to illustrate the deviation of the 
tails from each other, Gumbel’s characteristic extreme values have been calculated for the two 
distributions. For any given sample of size n, the Gumbel’s characteristic extreme values (uk) 
are defined as follows. 

 uk = G–1(k/n) = sup {x: G(x) > k/n} ; k = 1, 2, …, n , 

where G := 1–F and F is the common empirical distribution function of the sample elements.  

It can be shown that in the above example Gumbel’s characteristic extreme value (u1) consid-
erably differs for the two distribution models. One obtains u1 = 18 for the negative binomial and 
u1 = 42 for the Waring distribution although the calculated frequencies hardly differ in the cen-
tral section and at the lower end of the distributions. 

A further real-world example is based on citation data collected for the topic “Osteoarthritis 
research”. Data have been extracted from Thomson Reuters’ Web of Science. The publication 
year was 2008 and the citation window comprises four years beginning with the publication 
year (i.e., 2008–2011). Since parameter estimation is based on the mean (m = 9.437) and the 
share of uncited papers (f0 = 11.4%), the shapes of both fitted distributions (negative binomial 
and Waring) are close to the shape of the empirical one (see Figure 2). The estimated parameters 
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are N = 0.88 and P = 10.7 for the negative binomial model, and N=39.53 and α = 5.19 for the 
Waring distribution. 

 
Figure 2. Fit of the negative binomial and Waring distribution to the “head” and “trunk” of the citation 

distribution in ‘osteoarthritis research’ (Publication year: 2008, citation window: 2008-2011) 
[Data sourced from Thomson Reuters Web of Knowledge]  

For Gumbel’s extreme values one obtains u1 = 86 from the negative binomial model and u1 = 
148 from the Waring model. However, the most cited paper received 411 citations and the num-
ber of citations received by the paper ranking fourth (152 citations) roughly coincides with the 
“prediction”. Glänzel and Schubert (1988a) have shown that the often extremely long tail can 
often not be explained by the underlying distribution model.  

In total, only 1.3% of all papers in the set received more than 50 citations each, however, these 
papers jointly received 11.4% of all citations. It is straightforward to show that, in general, we 
have the following situation.  

i) In the “exponential” case the share p ∈[0, 1] of the most cited papers receives a share p 
of all citations. 

ii)  In the “Paretian” case the share p ∈[0, 1] of the most cited papers receives a share α

α

p
1−

 

of all citations, where α is assumed to be larger than 1. 

In the above case, for instance, the exponential tail model has obviously to be rejected. In the 
Paretian model p=1.3% results in  

a) 23.5% for α= 1.5, 

b) 11.4% for α = 2, and 

c) 5.5% for α = 3 

This means, that with respect to the tail the parameter estimation for the Waring distribution on 
the basis of the head and trunk needs to be corrected, i.e., an α value in the neighbourhood of 2 
should be assumed instead of previously estimated value of 5. However, both the exponential 
and the Paretian model works well for the head and trunk usually representing 95% or even 
more of the observations, but they are not in line with the long tail (cf. Glänzel and Schubert, 
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1988a). In the following sections two particular approaches to overcome this discrepancy will 
be discussed. The first one is based on a tail parameter, while the second one provides a parame-
ter-free solution. 

3. TAIL INDICES AS SUPPLEMENT FOR PERFORMANCE 
INDICATORS 

3.1. The tail index of Paretian distributions 

Because of the above mentioned “inconsistencies” of tail evaluation the question arises of in 
how far tail characteristics could supplement bibliometric indicators that are, otherwise, rather 
measuring the mainstream.  In several areas such as insurance mathematics, where extreme 
values play an important role, the estimation of the tail parameter α of Pareto-type distributions 
has received much attention. Assume that {Xi} i=1, .., n  is a sample of independent identically dis-
tributed random variables with Paretian distribution. Then the ranked sample Xi

* has the follow-
ing property. 

 P(k⋅ln(X*
k/X

*
k+1) < x) ~ 1–e–α⋅x ; k ≤ k0 

Hence Hill's estimator (Hill, 1975) for the tail index γ = α–1 can be derived as the mean of the 
upper k elements of this series. 
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1
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It can be shown that Hk is asymptotically normally distributed (if k << n) with variance 1/(kα2). 
This property allows to construct confidence intervals for γ = α–1.  

The estimation of the tail index is rather problematic since most methods, as for instance the 
Hill estimator too, are sensitive to the cut-off point for the tail. Mathematicians have therefore 
sought for alternative and more robust solutions ever since. In what follows, one simple solution 
will be presented that provides more robust results, but is still sensitive to the cut-off point.  

3.2. QQ plots  

Assume that {X* i} i=1,..,n is a ranked sample of the observations {Xi} i=1,..,n. The exponential quan-
tile–quantile plot (QQ plot) is then constructed as follows. 

 *ln , ln
1 i

i
X

n

  −  +  
 ,   i = 1, 2, ... n 

Beirlant et al. (2004) have shown that in case of linearity the slope of a Pareto QQ plot ap-
proximates the Pareto tail index γ = 1/α. The application of quantile plotting to scientometrics 
and using the Pareto tail index for the assessment of individual research performance has been 
proposed by Beirlant et al (2007). Since the choice of the cut-off point is always arbitrary the h-
index is used for the following examples. At the macro and meso level this choice forms a good 
compromise but at lower levels of aggregation the h-index goes often far beyond the tail, nota-
bly in the case of citation impact of pre-eminent scientists.  

Figures 3 and 4 present the QQ plots for two research topics. The tail index γ is given by the 
slope of the regression line. The first one is already known by the above discussion. The plot for 
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osteoarthritis research shown in Figure 3 once again emphasises that the Pareto parameter α 
has to be assumed much less than estimated from the sample. The value of 1.6 lies even below 
that one suggested on the basis of the citation share received by the most cited 1.3% of publica-
tions. Also the second example is taken from the Web of Science database. The topic is biofuels 
within the subject category ‘fuels and energy’. Publication year and citation window are the 
same as in the previous example. Here one obtains a Pareto parameter of almost exactly 2 and 
the fit is even better than in the previous example. Similarly to osteoarthritis research, mean and 
share of uncited papers, otherwise, provide good fits of the overwhelming part of the distribu-
tion for both the negative binomial and the Waring model.  

In evaluative practice, the mean and the share of uncited papers could be supplemented by the 
tail index γ = 1/α to characterise the outstanding citation impact. Clearly, a higher γ value indi-
cates more outstanding performance. This method is already applied by several bibliometric 
groups (e.g., Lietz, 2012). Of course, the question arises of what the weight of an indicator 
based on a minute share of publications could be, and in how far this kind of quantification 
could be precise enough to provide a reliable measure for the assessment of (outstanding) per-
formance or even for ranking exercises. The almost insoluble problem of finding the optimum 
cut-off point for the tail of non-Pareto Paretian distributions and the observed incompatibility 
with other estimators for the same parameter (cf. Glänzel and Schubert, 1988a) makes the use of 
the tail index as a fine-tuned indicator for evaluative purposes questionable. 

y = 0.625x + 0.503
R² = 0.958

1.5
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Figure 3. Pareto QQ plot based on the h-index (44) for the topic osteoarthritis research with α = 1.6 
(Publication year: 2008, citation window: 2008-2011) [Data sourced from Thomson Reuters Web of 

Knowledge] 
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y = 0.495x + 1.098
R² = 0.973

1.4

1.6

1.8

2.0

2.2

2.4

2.6

2.8

3.0

1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0 3.2 3.4 3.6
 

Figure 4. Pareto QQ plot based on the h-index (70) for the topic biofuel research with α = 2.0 (Publica-
tion year: 2008, citation window: 2008-2011) [Data sourced from Thomson Reuters Web of Knowledge] 

A further issue arises from real outliers that might distort the estimates or at least affect their 
reliability. In such cases, only a smaller fraction of data can be used for inference in the tail.  
Recently statistics of extremes of randomly censored data (Einmahl et al., 2008) has become a 
new topic in probability theory to cope with suchlike issues. In the following, an alternative 
method, that is less sensitive to the above-mentioned contingencies than the tail index γ, will be 
introduced. 

4. A PARAMETER-FREE SOLUTION USING CSS 

A further alternative is a “reduction” of the distribution over individual items to a distribution 
over some essential classes representing specific sections of the original one. A solution using 
six classes has been suggested by Leydesdorff et al. (2011). According to their model, a pre-set 
set of six rank percentages is calculated on the basis of the reference distribution. Individual 
observations are then scored according to the percentage the publications in question belong to. 
Two particular problems arise from this approach, namely the arbitrariness of pre-set percentiles 
and the ties in both the reference distribution and the observations.  

4.1. Characteristic Scores and Scales (CSS) 

Another solution can be based on the method of Characteristic Scores and Scales (CSS) pro-
posed by Glänzel and Schubert (1988b).  Characteristic scores are obtained from iteratively 
truncating samples at their mean value and recalculating the mean of the truncated sample until 
the procedure is stopped or no new scores are obtained. The following mathematical description 
has been taken from a study by Glänzel (2007, p.93–94). 

First put b0 = 0 and ν0 = n, where n is the sample size, i.e., the number of publications. b1 is then 
defined as the sample mean 

*

1
1 1

n n
i i

i i o

X X
b

n v= =
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The value ν1 is defined by the following inequality  
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The basic properties b0 ≤  b1 ≤  ...  and ν0 ≥ ν1 ≥  ... are obvious from the definition. Obviously, 
the procedure comes to an end if νk = 1 for some k > 0 is reached. The k-th class is defined by 
the pair of threshold values [bk-1, bk) and the number of papers belonging to this class amounts to 
νk-1–νk.  

The procedure is usually stopped at k = 3 since νk might otherwise become too small. The pa-
pers found in the resulting four classes are called poorly cited (less cited than average), fairly 
(above average but less citations than b2), remarkably cited (received at least b2 but less than b3 
citations) and outstandingly cited (more frequently cited than b3). 

Both the scores bk and the scales (νk-1–νk) have interesting mathematical properties, which result 
in self-adjusting, parameter-free solutions for citation-impact assessment. The robustness of 
scales and classes has been analysed in the above-mentioned paper by Glänzel (2007). 

According to the characterisation theorem for the Pareto distribution by Glänzel et al. (1984) the 
conditional expectation satisfies the condition  

 bk = E(X|X ≥ bk-1) ~ a⋅bk-1 + b1 ,  

where a = α/(α-1) and α is the free (tail) parameter of the Pareto distribution. This results by 
recursion in the following property 
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These properties will serve as the groundwork for possible application to research evaluation, 
notably for the high-end of performance. 

4.2. CSS in evaluation practice 

Characteristic scores should – as all location indicators – not be used for comparison across 
subject areas since those depend strongly on the subject. The first score b1 is, in fact, identical 
with the mean value of the empirical citation distribution. All other scores are conditional means 
depending also on b1, and thus increase with growing k following a power law. Examples for 
this effect can be found in Glänzel (2007), again. 

Within a narrow discipline, the comparison of corresponding scores is, of course, possible. This 
is shown using the example of papers published in the journals Scientometrics in the period 
2002-2011. The long period was necessary to obtain sufficiently large publication sets for both 
the world total and the individual countries that have published in the journal. Citations have 
been counted from the publication year till 2012. I have selected four countries and compared 
their citation impact among each other as well as with the world standard.  
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It should be mentioned that this example primarily serves as an illustration of methodology be-
cause of some limitations due to the choice of the citation window. In particular, a paper pub-
lished in 2010 or later has, of course, window less chance to reach the highest class than a paper 
published much earlier, but this has little effect if the distribution of publications of the countries 
under study over the complete period does not essentially differ. More specifically, the variable 
citation-window structure is to the detriment of dynamically growing countries like China since 
articles tend to be younger than those in the reference set.  

The scores for the world total are used as the reference standard. The procedure was stopped at 
k = 3. The calculation of the equivalent scores for each country is not necessary; it is merely 
used an auxiliary tool for internal  benchmarking and illustration of the possibility of intra-
subject comparison. The corresponding bi thresholds are shown in Table 1. For example, all bi 

values of the US are higher than those of Spain thus representing a higher standard at all levels, 
and a US paper in scientometrics needs 49 citations to be considered outstandingly cited with 
respect to the own national standard, while in Spain 30 citations are sufficient to reach the same 
effect with respect to the Spanish benchmark. However, papers from both countries need to 
receive 55 citations each to qualify as outstandingly cited with respect to the world standard.  

Table 1. CSS scores of Scientometrics papers for the world standard and four selected countries [Data 
sourced from Thomson Reuters Web of Knowledge] 

Score World USA Spain Belgium China 

b1 9.2 9.6 6.2 16.0 6.8 

b2 26.5 26.0 16.5 43.2 16.3 

b3 54.5 48.2 29.5 100.8 27.6 

 

After these introductory considerations, the assessment of the citation impact according to per-
formance classes will be explained. Preferably four classes should be used, where the bi thresh-
olds calculated from the world total are used again as reference standard. The share of a given 
unit’s (e.g., country, region or institute) papers found in the four world classes of the reference 
population can be compared with the world standard as well as with other units. Note that the 
unit under study (and all other benchmark units as well) must be part of the reference popula-
tion. The CSS scores of the world standard then serve as the benchmark (cf. Glänzel and Schu-
bert, 1988b). If a unit's performance is a true “mirror” of the world standard, its distribution over 
classes is expected to coincide with that of the world.  

In the present case, for instance, 13 out of 148 papers with Belgium author(s) have received 
more than 26 but less than 55 citations each (see Table 2). These 8.8% of all Belgian papers are 
considered remarkably cited. 9 papers have been cited more frequently than 54 times each. Thus 
6.1% of Belgian papers in Scientometrics are outstandingly cited. The share of papers in the 
classes fairly, remarkably and outstandingly cited exceed their reference standards. Conse-
quently, the remaining class of poorly cited papers contains less papers than expected on the 
basis of the world standard. The four countries’ publication counts meeting the above criteria 
and the shares in the corresponding classes can be found in Table 2. The comparison among the 
individual countries can be interpreted analogously. The “reduced” distribution with four classes 
provides a quantified overview of citation impact with respect to the world standard while it 
keeps the peculiarities of the shape and skewness of the original citation distribution. For in-
stance, the data for the US reveal a less polarised distribution than the reference standard. 

Table 2. CSS-class shares of publications in Scientometrics for four selected counties with respect to the 
world standard [Data sourced from Thomson Reuters Web of Knowledge] 
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USA Spain Belgium China World 

Papers Share Papers Share Papers Share Papers Share Papers Share 

133 71.5% 126 81.8% 87 58.8% 109 80.1% 1047 74.1% 

37 19.9% 21 13.6% 39 26.4% 20 14.7% 261 18.5% 

13 7.0% 6 3.9% 13 8.8% 6 4.4% 77 5.4% 

3 1.6% 1 0.6% 9 6.1% 1 0.7% 28 2.0% 

186 100.0% 154 100.00% 148 100.00% 136 100.00% 1413 100.00% 
 

The question arises of what indicator(s) could be built on the basis of these shares. The answer 
to that question is none. This is certainly a disappointment to those who wish to would like to 
express citation impact by one single number. However, one should resist any temptation to 
calculate averages, linear combinations or composite indicators over classes. This would result 
in crashing multi-dimensionality to linearity and in loosing essential information. Except for 
smoothening the effect of real outliers, these indicators would not provide more information 
than properly calculated elementary statistics. 

Although shares should be compared in each discipline separately, combination over subjects is 
in principle possible. In order to avoid distortions caused by different citation behaviour in the 
different disciplines, classes should be determined for each individual subject, and appropriate 
shares should be combined on the basis of the unit’s publication counts in the corresponding 
classes afterwards. One should, however, keep in mind that the results for large subject fields 
and for all fields combined calculated in this way might be affected by biases caused by deviat-
ing publication profiles of different units. 

5. DISCUSSION AND CONCLUSIONS  

The analysis of the high-end of scientific distributions is one of the most difficulty issues in 
evaluative scientometrics. And this is not merely a mathematical issue: it is fundamentally quite 
impossible to draw an exact borderline between “very good” and “outstanding”. Furthermore, in 
citation analysis, outstanding performance can often not be explained by the “standard” citation 
behaviour (cf. Glänzel and Schubert, 1988) – and individual observations might be misleading 
and even distort statistics as has impressively been shown by Waltman et al. (2012). One ex-
tremely highly cited paper might even distort the ranking of universities if this is based on one 
single statistic. However, this is not typically a bibliometric issue. So-called censored data or 
data distorting extreme values of a distribution are known in several fields, e.g., in insurance 
mathematics (cf. Matthys et al., 2004), just to mention one example.  

The analysis of the tail of publication and citation distributions, i.e., of that part, which is as-
sumed to be linked with high performance, might help understand the mathematical rules of 
extreme communication behaviour and quantify outstanding performance. However, estimators 
of tail indices, as such, represent a very small share of the underlying population or sample and 
do not provide information about the characteristics of the overwhelming majority. Furthermore, 
these statistics are often not suited for combination with standard statistics. Percentiles or – even 
better – self-adjusting classes like those obtained from the CSS model allow the definition of 
proper performance classes and the needless integration of measures of outstanding and even 
extreme performance into the assessment of standard performance. Even extreme outliers like 
the case reported by Waltman et al. do not affect statistics because the influence of individual 
observation on the total publication is marginal and observation for the units under study are 
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represented by classes instead of individual values. The only “drawback” of this method is that 
the calculation of a “single” indicator over classes should be avoided as this would reduce the 
gained added value and destroy all advantages of the method. 
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